シラバス情報

科目授業名称(和文) Name of the subject/class (in Japanese)
文献研究2 (功刀)
科目授業名称(英文) Name of the subject/class (in English)
Seminar and Research in Mathematics 2 (功刀)
授業コード Class code
991B208
科目番号 Course number
11GRRES502

教員名
功刀 直子
Instructor
Naoko Kunugi

開講年度学期
2025年度後期
Year
2025年度
Semester
②Second semester
曜日時限
集中講義
Class hours
Intensive course

開講学科・専攻 Department
理学研究科 数学専攻

Department of Mathematics, Graduate School of Science
単位数 Course credit
3.0単位
授業の方法 Teaching method
卒業研究(研究指導)

Graduation research(Research Guidance)
外国語のみの科目(使用言語) Course in only foreign languages (languages)
-
授業の主な実施形態 Main class format
① [対面]対面授業/ [On-site] On-site class

概要 Description
有限群のモジュラー表現論の基本事項をセミナー形式で学ぶ。  

We learn basic concepts of modular representation theory of finite groups in seminar style classes.
目的 Objectives
有限群のモジュラー表現では,群環上の加群は半単純加群とはならない。半単純ではない加群の構造を調べるうえで重要となる多元環の表現論の一般論を学び,有限群のモジュラー表現論に応用する。

In modular representations of finite groups, a module over a group algebra is not semisimple in general. 
In this course, we aim at learning general theory on representation theory of finite dimensional algebras which is important for investigation of non-semisimple modules and applying those to modular representations of finite groups.
到達目標 Outcomes
1. 群環上の加群の議論に特有なvertex, source 等について理解する。
2.Green対応の理論を用いて直既約加群の構造を調べる手法を理解し,具体例に応用できる
3.有限群のブロックに関するBrauerの理論を理解する。

1.Understand verticies and sources for modules over group algebras
2. Understand general method to investigate indecomposable modules using theory of Green correspondences and apply them to some examples.
3. Understand Brauer's theory for blocks of finite groups.
卒業認定・学位授与の方針との関係(学部科目のみ)
リンク先の [評価項目と科目の対応一覧]から確認できます(学部対象)。
履修登録の際に参照ください。
​You can check this from “Correspondence table between grading items and subjects” by following the link(for departments).
https://www.tus.ac.jp/fd/ict_tusrubric/​​​
履修上の注意 Course notes prerequisites
特になし。
Nothing special.
アクティブ・ラーニング科目 Teaching type(Active Learning)
-
-

準備学習・復習 Preparation and review
毎回の予習・復習を必ず行うこと(10時間)
Be sure to prepare and review before each class(10 hours).
成績評価方法 Performance grading policy
プレゼンテーションの出来ばえ,議論への参加の積極性を加味して評価する。

To be evaluated in taking account of the presentation's performance level and positiveness of participation in discussion.
学修成果の評価 Evaluation of academic achievement
・S:到達目標を十分に達成し、極めて優秀な成果を収めている
・A:到達目標を十分に達成している
・B:到達目標を達成している
・C:到達目標を最低限達成している
・D:到達目標を達成していない
・-:学修成果の評価を判断する要件を欠格している

・S:Achieved outcomes, excellent result
・A:Achieved outcomes, good result
・B:Achieved outcomes
・C:Minimally achieved outcomes
・D:Did not achieve outcomes
・-:Failed to meet even the minimal requirements for evaluation

教科書 Textbooks/Readings
教科書の使用有無(有=Y , 無=N) Textbook used(Y for yes, N for no)
N
書誌情報 Bibliographic information
-
MyKiTSのURL(教科書販売サイト) URL for MyKiTS(textbook sales site)
教科書および一部の参考書は、MyKiTS (教科書販売サイト) から検索・購入可能です。
https://gomykits.kinokuniya.co.jp/tokyorika/​​​

It is possible to search for and purchase textbooks and certain reference materials at MyKiTS (online textbook store).
​​https://gomykits.kinokuniya.co.jp/tokyorika/

参考書・その他資料 Reference and other materials
J. L. Alperin "Local representation theory"
永尾・津島 有限群の表現 

Nagao-Tsushima, "Representations of finite groups"

授業計画 Class plan
1〜5:誘導加群,vertex と source, について学ぶ。
6〜10:直既約加群に関するGreen の理論について学ぶ。
11〜15:有限群のブロックに関するBrauer の理論について学ぶ。

1〜5:Induced modules, vertecies and sources.
6〜10 : Theory of Green on indecomposable modules.
11〜15:Theory of Brauer on blocks of finite groups.

担当教員の実務経験とそれを活かした教育内容 Work experience of the instructor
-
教育用ソフトウェア Educational software
-
-

備考 Remarks

授業でのBYOD PCの利用有無 Whether or not students may use BYOD PCs in class
N
授業での仮想PCの利用有無 Whether or not students may use a virtual PC in class
N