| 
					 
  
						教員名 : 関川 浩 
						
  | 
				
					 科目授業名称(和文) Name of the subject/class (in Japanese) 
							卒業研究 (理一OS科関川) 
							科目授業名称(英文) Name of the subject/class (in English) 
							Senior Seminar 
							授業コード Class code 
							9914W22 
							科目番号 Course number 
							14UGRES401 
							教員名 
							原田 遼太郎、関川 浩 
							Instructor 
							Hiroshi Sekigawa 
							開講年度学期 
							2025年度前期、2025年度後期 
							Year 
							2025年度 
							Semester 
							③First semester, Second semester 
							曜日時限 
							集中講義 
							Class hours 
							開講学科・専攻 Department 
							理学部第一部 応用数学科 
							Department of Applied Mathematics, Faculty of Science Division Ⅰ 単位数 Course credit 
							8.0単位 
							授業の方法 Teaching method 
							卒業研究(研究指導) 
							Graduation research(Research Guidance) 外国語のみの科目(使用言語) Course in only foreign languages (languages) 
							- 
							授業の主な実施形態 Main class format 
							① [対面]対面授業/ [On-site] On-site class 
							概要 Description 
							計算機代数(計算代数あるいは数式処理ともいう)は,近似計算は用いず正確な計算を利用する点,有限ステップで終了する代数的な計算を行う点が,数値計算と比較したときの主な違いである.数値数式融合計算は,計算機代数を基本としつつ数値計算も利用して,両者の長所を生かそうとする計算技術である. 前期は教科書を用い,輪講形式でゼミを進める. 後期は専門書や論文などにより計算機代数のより進んだ内容や数値数式融合計算になどついて学ぶとともに,担当教員が企業の研究員のときに扱った,数値数式融合計算を実際の問題に適用した例なども取り上げる.さらに課題として,プログラミングや計算機実験も行う.最後に発表会にて発表を行う。 目的 Objectives 
							本科目は本学科のカリキュラム・ポリシーに定める「数学を中心とする基礎教育と,応用領域を基盤とする最先端の多様な専門教育」のうちの専門教育に該当する科目の一つであり,ディプロマ・ポリシーに定める「数学を中心とする基礎知識を習得し、数学の応用領域を体系的かつ統合的に理解できる能力」を身につけること,具体的には,計算機代数および数値数式融合計算による代数方程式の扱いを身につけることと合わせて輪講や実験のしかたを学び,情報数理を核とし周辺分野を含めた領域を体系的かつ統合的に理解できる能力を身につけることが目的である. 
							到達目標 Outcomes 
							(1) 代数方程式や多項式の基本的な性質について説明できる. 
							(2) 実係数あるいは複素係数の一変数代数方程式に関する基本的な数式処理アルゴリズムについて説明できる. 卒業認定・学位授与の方針との関係(学部科目のみ) 
							リンク先の [評価項目と科目の対応一覧]から確認できます(学部対象)。 
							履修登録の際に参照ください。 You can check this from “Correspondence table between grading items and subjects” by following the link(for departments). https://www.tus.ac.jp/fd/ict_tusrubric/ 履修上の注意 Course notes prerequisites 
							とくになし. 
							アクティブ・ラーニング科目 Teaching type(Active Learning) 
							ディベート・ディスカッション Debate/Discussion/グループワーク Group work/プレゼンテーション Presentation/反転授業 Flipped classroom 
							- 
							準備学習・復習 Preparation and review 
							輪講形式で進めるので,当番の者は少なくとも発表時間の10倍程度の時間を掛けて準備をすること.また,当番ではない者も3時間程度の準備学習をしておくこと. 
							授業中に取り上げた証明,例,問題などは3時間程度復習して理解しておくこと. 成績評価方法 Performance grading policy 
							輪講における発表の様子,課題に対する取り組みおよび発表の様子による. 
							学修成果の評価 Evaluation of academic achievement 
							・S:到達目標を十分に達成し、極めて優秀な成果を収めている 
							・A:到達目標を十分に達成している ・B:到達目標を達成している ・C:到達目標を最低限達成している ・D:到達目標を達成していない ・-:学修成果の評価を判断する要件を欠格している ・S:Achieved outcomes, excellent result ・A:Achieved outcomes, good result ・B:Achieved outcomes ・C:Minimally achieved outcomes ・D:Did not achieve outcomes ・-:Failed to meet even the minimal requirements for evaluation 教科書 Textbooks/Readings 
						教科書の使用有無(有=Y , 無=N) Textbook used(Y for yes, N for no) 
							Y 
							書誌情報 Bibliographic information 
							教員が用意するので購入不要 
							MyKiTSのURL(教科書販売サイト) URL for MyKiTS(textbook sales site) 
							教科書および一部の参考書は、MyKiTS (教科書販売サイト) から検索・購入可能です。 
							https://gomykits.kinokuniya.co.jp/tokyorika/ It is possible to search for and purchase textbooks and certain reference materials at MyKiTS (online textbook store). https://gomykits.kinokuniya.co.jp/tokyorika/ 参考書・その他資料 Reference and other materials 
							ゼミで随時紹介し,必要に応じて資料を配付する. 
							授業計画 Class plan 
							すべての履修学生に対して半数回以上の対面受講を求める. 
							[1回目] 導入 [2〜4回目] 複素数に関する基本事項について理解する. [5〜8回目] 代数方程式の根に関する性質(連続性,存在範囲など)について理解する. [9〜15回目] 与えられた範囲内にある代数方程式の根を数え上げるアルゴリズムについて理解する. [16〜23回目] さらに進んだ内容の,計算機代数や数値数式融合計算,あるいは,各自選んだテーマのアルゴリズムについて理解する. [24〜30回目] 課題の実施とレポート作成,発表. 担当教員の実務経験とそれを活かした教育内容 Work experience of the instructor 
							情報通信関係企業での研究員(数学,情報系)としての勤務実績を活かし,計算機代数などに関する講義を行う. 
							教育用ソフトウェア Educational software 
							Mathematica 
							Python 
							備考 Remarks 
							授業でのBYOD PCの利用有無 Whether or not students may use BYOD PCs in class 
							Y 
							授業での仮想PCの利用有無 Whether or not students may use a virtual PC in class 
							N 
							 |