![]() 教員名 : 小笠原 英穂
|
科目授業名称(和文) Name of the subject/class (in Japanese)
微分方程式論2
科目授業名称(英文) Name of the subject/class (in English)
Theory of Differential Equations 2
授業コード Class code
9914610
科目番号 Course number
14MAANA302
教員名
小笠原 英穂
Instructor
Hideho Ogasawara
開講年度学期
2023年度後期
Year/Semester
2023 2nd Semester
曜日時限
水曜1限
Class hours
Wednesday 1st Period
開講学科・専攻 Department
理学部第一部 応用数学科
Department of Applied Mathematics, Faculty of Science Division Ⅰ 単位数 Course credit
2.0単位
授業の方法 Teaching method
講義
Lecture 外国語のみの科目(使用言語) Course in only foreign languages (languages)
-
授業の主な実施形態 Main class format
対面授業/On-site class
概要 Description
微分方程式の基本事項として、1階線形微分方程式や2階線形微分方程式、高階線形定係数微分方程式の解法などを中心に学ぶ.
目的 Objectives
微分方程式は、自然科学は言うまでもなく、社会科学や工学上の様々な現象を記述する数学的道具として極めて有用であり、古くから多くの研究がなされてきた.その基本事項を理解し、身に付ける.その過程で論理的思考能力や問題解決能力を養う.
本学科のディプロマ・ポリシーに定める『数学を中心とする基礎知識を習得し、数学の応用領域を体系的かつ統合的に理解できる能力』を養成するための科目である. 到達目標 Outcomes
線形微分方程式についての基本事項が一通り理解でき、典型問題が解けるようになる.具体的には、線形微分方程式の解構造を線形空間の例として説明でき、高階の線形定係数微分方程式の一般解が求められるようになる.また演算子による記号的解法によって、特殊解を効率的に求められるようになる.
卒業認定・学位授与の方針との関係(学部科目のみ)
専門応用能力
履修上の注意 Course notes prerequisites
この授業は基本的に反転授業なので,LETUSに掲示された動画を予め視聴している必要がある.そのことを前提として,授業ではその内容に関する演習及び解説を行う.
前期の「微分方程式論1」はいうまでもないが、2年次の選択必修科目「続微積分1, 2」も履修済みかあるいは現在履修中であることが望ましい.演習にも用いるので教科書は必ず購入すること.MathematicaやExcelを課題で利用する場合があるので,いつでも使えるようにしておくこと. アクティブ・ラーニング科目 Teaching type(Active Learning)
反転授業 Flipped classroom
-
準備学習・復習 Preparation and review
履修上の注意に書いたように、予習としてLETUSに掲示された動画を事前に視聴し、ノートも取ってまとめておくこと.
前回の内容の教科書・ノートを見返して復習し、教科書の問を解いてみて理解度を確認する.次回の内容の教科書を読んで予習する.もし疑問に思うことや理解しにくい箇所があれば、授業時に解決できるようにポイントを整理・準備しておく(予・復習合わせて3時間程度). 成績評価方法 Performance grading policy
出席が良好である前提(15回x80%=12回以上出席)で、平常時の課題、レポート・試験等を総合して評価する.7〜9回目頃に中間試験を行う.なお、病欠等特別な理由なく出席が良好でない場合(上記の基準未満)や中間試験が著しく悪い場合は評価対象外とする.
学修成果の評価 Evaluation of academic achievement
・S:到達目標を十分に達成し、極めて優秀な成果を収めている
・A:到達目標を十分に達成している ・B:到達目標を達成している ・C:到達目標を最低限達成している ・D:到達目標を達成していない ・-:学修成果の評価を判断する要件を欠格している ・S:Achieved outcomes, excellent result ・A:Achieved outcomes, good result ・B:Achieved outcomes ・C:Minimally achieved outcomes ・D:Did not achieve outcomes ・-:Failed to meet even the minimal requirements for evaluation 教科書 Textbooks/Readings
教科書の使用有無(有=Y , 無=N) Textbook used(Y for yes, N for no)
Y
書誌情報 Bibliographic information
-
MyKiTSのURL(教科書販売サイト) URL for MyKiTS(textbook sales site)
教科書および一部の参考書は、MyKiTS (教科書販売サイト) から検索・購入可能です。
It is possible to search for and purchase textbooks and certain reference materials at MyKiTS (online textbook store). https://gomykits.kinokuniya.co.jp/tokyorika/ 参考書・その他資料 Reference and other materials
[1] 大谷 光春「サイエンス社・理工基礎 微分方程式論」ライブラリ新数学大系E8
[2] 金子 晃「サイエンス社・微分方程式講義」ライブラリ数理・情報系の数学講義-4 [3] 小寺 平治「講談社・なっとくする微分方程式」 [4] 竹之内 脩「サイエンス社・微分方程式とその応用(新訂版)」新数学ライブラリ=3 [5] 松葉 育雄・丘 維礼・増井 裕也「共立出版・わかる・使える微分方程式」 授業計画 Class plan
1.2階常微分方程式(1) 2階線形微分方程式
定数係数とは限らない一般の2階線形微分方程式の基本事項が説明できる. 2.2階常微分方程式(2) 同次線形の場合(I) 同次の場合の解空間の構造が理解できる. 3.2階常微分方程式(3) 同次線形の場合(II) 引き続き同次の場合の解空間の構造が理解できる. 4.2階常微分方程式(4) 非同次線形の場合 非同次の場合の解法が説明できる. 5.2階常微分方程式(5) 特殊な形の2階微分方程式・応用 2階の特殊な非線形微分方程式の解法とその物理的応用を学ぶ. 6.高階微分方程式および連立微分方程式(1) n階線形微分方程式・演算子 高階線形微分方程式の基本事項と微分演算子が理解できる. 7.高階微分方程式および連立微分方程式(2) 定数係数線形方程式(I-1) 同次形の場合の解の構造と解法が理解できる. 8.高階微分方程式および連立微分方程式(3) 定数係数線形方程式(I-2) 引き続き同次形の場合の解の構造と解法が理解できる. 9.高階微分方程式および連立微分方程式(4) 定数係数線形方程式(II-1) 非同次形の場合の解の構造と解法が理解できる. 10.高階微分方程式および連立微分方程式(5) 定数係数線形方程式(II-2) 引き続き非同次形の場合の解の構造と解法が理解できる. 11.高階微分方程式および連立微分方程式(6) 連立微分方程式(I) 2つの従属変数をもつ連立微分方程式の解法が理解できる. 12.高階微分方程式および連立微分方程式(7) 連立微分方程式(II) 連立微分方程式の積分と独立性が理解できる. 13.解の存在と一意性(1) 1階常微分方程式の解の存在と一意に関する定理 Cauchy-Lipschitzの定理を学び, 解の存在と一意性の理論的保証が理解できる. 14.解の存在と一意性(2) 1階常微分方程式の解の存在と一意に関する定理 引き続き解の存在と一意性の理論的保証を学び具体例に適用できる. 15.後期の確認 到達度評価によって、後期に学んだ内容の習熟度を確認する.最後に簡単な解説を行う. 授業担当者の実務経験 Work experience of the instructor of the class
-
教育用ソフトウェア Educational software
Mathematica
Excel
備考 Remarks
|